Incremental Graph Computation: Anchored Vertex Tracking in Dynamic Social Networks

نویسندگان

چکیده

User engagement has recently received significant attention in understanding the decay and expansion of communities many online social networking platforms. When a user chooses to leave platform, it may cause cascading dropping out among her friends. In scenarios, would be good idea persuade critical users stay active network prevent such cascade because can have influence on whole network. Many studies been conducted find set (anchored) static However, networks are highly dynamic their structures continuously evolving. order fully utilize power anchored evolving networks, existing mine multiple sets at different times, which incurs an expensive computational cost. To better understand network, we target new research problem called Anchored Vertex Tracking (AVT) this paper, aiming track each timestamp networks. Nonetheless, is nontrivial handle AVT proved NP-hard. address challenge, develop greedy algorithm inspired by previous $k$-core study Furthermore, design incremental efficiently solve utilizing smoothness structure's evolution. The extensive experiments real synthetic datasets demonstrate performance our proposed algorithms effectiveness solving problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking Communities in Dynamic Social Networks

The study of communities in social networks has attracted considerable interest from many disciplines. Most studies have focused on static networks, and in doing so, have neglected the temporal dynamics of the networks and communities. This paper considers the problem of tracking communities over time in dynamic social networks. We propose a method for community tracking using an adaptive evolu...

متن کامل

Vertex isoperimetric parameter of a Computation Graph

Let G = (V, E) be a computation graph, which is a directed graph representing a straight line computation and S ⊂ V . We say a vertex v is an input vertex for S if there is an edge (v, u) such that v ∕∈ S and u ∈ S. We say a vertex u is an output vertex for S if there is an edge (u, v) such that u ∈ S and v ∕∈ S. A vertex is called a boundary vertex for a set S if it is either an input vertex o...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Incremental Local Evolutionary Outlier Detection for Dynamic Social Networks

Numerous applications in dynamic social networks, ranging from telecommunications to financial transactions, create evolving datasets. Detecting outliers in such dynamic networks is inherently challenging, because the arbitrary linkage structure with massive information is changing over time. Little research has been done on detecting outliers for dynamic social networks, even then, they repres...

متن کامل

Tracking performance of incremental LMS algorithm over adaptive distributed sensor networks

in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2022.3199494